26 research outputs found

    On the Delay-Throughput Tradeoff in Distributed Wireless Networks

    Full text link
    This paper deals with the delay-throughput analysis of a single-hop wireless network with nn transmitter/receiver pairs. All channels are assumed to be block Rayleigh fading with shadowing, described by parameters (α,ϖ)(\alpha,\varpi), where α\alpha denotes the probability of shadowing and ϖ\varpi represents the average cross-link gains. The analysis relies on the distributed on-off power allocation strategy (i.e., links with a direct channel gain above a certain threshold transmit at full power and the rest remain silent) for the deterministic and stochastic packet arrival processes. It is also assumed that each transmitter has a buffer size of one packet and dropping occurs once a packet arrives in the buffer while the previous packet has not been served. In the first part of the paper, we define a new notion of performance in the network, called effective throughput, which captures the effect of arrival process in the network throughput, and maximize it for different cases of packet arrival process. It is proved that the effective throughput of the network asymptotically scales as lognα^\frac{\log n}{\hat{\alpha}}, with α^αϖ\hat{\alpha} \triangleq \alpha \varpi, regardless of the packet arrival process. In the second part of the paper, we present the delay characteristics of the underlying network in terms of the packet dropping probability. We derive the sufficient conditions in the asymptotic case of nn \to \infty such that the packet dropping probability tend to zero, while achieving the maximum effective throughput of the network. Finally, we study the trade-off between the effective throughput, delay, and packet dropping probability of the network for different packet arrival processes.Comment: Submitted to IEEE Transactions on Information Theory (34 pages

    Two-Dimensional Drone Base Station Placement in Cellular Networks Using MINLP Model

    Get PDF
    Utilization of drones is going to become predominated in cellular networks as aerial base stations in order to temporary cover areas where stationary base stations cannot serve the users. Detecting optimal location and efficient number of drone-Base Stations (DBSs) are the targets we tackle in this paper. Toward this goal, we first model the problem using mixed integer non-linear programming. The output of the proposed method is the number and the optimal location of DBSs in a two-dimension area, and the object is to maximize the number of covered users. In the second step, since the proposed method is not solvable using conventional methods, we use a proposed method to solve the optimization problem. Simulation results illustrate that the proposed method has achieved its goals

    Delay-Throughput Analysis in Distributed Wireless Networks

    Get PDF
    A primary challenge in wireless networks is to use available resources efficiently so that the Quality of Service (QoS) is satisfied while maximizing the throughput of the network. Among different resource allocation strategies, power and spectrum allocations have long been regarded as efficient tools to mitigate interference and improve the throughput of the network. Also, achieving a low transmission delay is an important QoS requirement in buffer-limited networks, particularly for users with real-time services. For these networks, too much delay results in dropping some packets. Therefore, the main challenge in networks with real-time services is to utilize an efficient power allocation scheme so that the delay is minimized while achieving a high throughput. This dissertation deals with these problems in distributed wireless networks

    On the Throughput Maximization in Dencentralized Wireless Networks

    Full text link
    A distributed single-hop wireless network with KK links is considered, where the links are partitioned into a fixed number (MM) of clusters each operating in a subchannel with bandwidth WM\frac{W}{M}. The subchannels are assumed to be orthogonal to each other. A general shadow-fading model, described by parameters (α,ϖ)(\alpha,\varpi), is considered where α\alpha denotes the probability of shadowing and ϖ\varpi (ϖ1\varpi \leq 1) represents the average cross-link gains. The main goal of this paper is to find the maximum network throughput in the asymptotic regime of KK \to \infty, which is achieved by: i) proposing a distributed and non-iterative power allocation strategy, where the objective of each user is to maximize its best estimate (based on its local information, i.e., direct channel gain) of the average network throughput, and ii) choosing the optimum value for MM. In the first part of the paper, the network hroughput is defined as the \textit{average sum-rate} of the network, which is shown to scale as Θ(logK)\Theta (\log K). Moreover, it is proved that in the strong interference scenario, the optimum power allocation strategy for each user is a threshold-based on-off scheme. In the second part, the network throughput is defined as the \textit{guaranteed sum-rate}, when the outage probability approaches zero. In this scenario, it is demonstrated that the on-off power allocation scheme maximizes the throughput, which scales as WαϖlogK\frac{W}{\alpha \varpi} \log K. Moreover, the optimum spectrum sharing for maximizing the average sum-rate and the guaranteed sum-rate is achieved at M=1.Comment: Submitted to IEEE Transactions on Information Theor

    On the Energy Efficiency of LT Codes in Proactive Wireless Sensor Networks

    Full text link
    This paper presents an in-depth analysis on the energy efficiency of Luby Transform (LT) codes with Frequency Shift Keying (FSK) modulation in a Wireless Sensor Network (WSN) over Rayleigh fading channels with pathloss. We describe a proactive system model according to a flexible duty-cycling mechanism utilized in practical sensor apparatus. The present analysis is based on realistic parameters including the effect of channel bandwidth used in the IEEE 802.15.4 standard, active mode duration and computation energy. A comprehensive analysis, supported by some simulation studies on the probability mass function of the LT code rate and coding gain, shows that among uncoded FSK and various classical channel coding schemes, the optimized LT coded FSK is the most energy-efficient scheme for distance d greater than the pre-determined threshold level d_T , where the optimization is performed over coding and modulation parameters. In addition, although the optimized uncoded FSK outperforms coded schemes for d < d_T , the energy gap between LT coded and uncoded FSK is negligible for d < d_T compared to the other coded schemes. These results come from the flexibility of the LT code to adjust its rate to suit instantaneous channel conditions, and suggest that LT codes are beneficial in practical low-power WSNs with dynamic position sensor nodes.Comment: accepted for publication in IEEE Transactions on Signal Processin

    Adaptive Demodulation in Differentially Coherent Phase Systems: Design and Performance Analysis

    Full text link
    Adaptive Demodulation (ADM) is a newly proposed rate-adaptive system which operates without requiring Channel State Information (CSI) at the transmitter (unlike adaptive modulation) by using adaptive decision region boundaries at the receiver and encoding the data with a rateless code. This paper addresses the design and performance of an ADM scheme for two common differentially coherent schemes: M-DPSK (M-ary Differential Phase Shift Keying) and M-DAPSK (M-ary Differential Amplitude and Phase Shift Keying) operating over AWGN and Rayleigh fading channels. The optimal method for determining the most reliable bits for a given differential detection scheme is presented. In addition, simple (near-optimal) implementations are provided for recovering the most reliable bits from a received pair of differentially encoded symbols for systems using 16-DPSK and 16- DAPSK. The new receivers offer the advantages of a rate-adaptive system, without requiring CSI at the transmitter and a coherent phase reference at the receiver. Bit error analysis for the ADM system in both cases is presented along with numerical results of the spectral efficiency for the rate-adaptive systems operating over a Rayleigh fading channel.Comment: 25 pages, 11 Figures, submitted to IEEE Transactions on Communications, June 1, 201

    ViT-CAT: Parallel Vision Transformers with Cross Attention Fusion for Popularity Prediction in MEC Networks

    Full text link
    Mobile Edge Caching (MEC) is a revolutionary technology for the Sixth Generation (6G) of wireless networks with the promise to significantly reduce users' latency via offering storage capacities at the edge of the network. The efficiency of the MEC network, however, critically depends on its ability to dynamically predict/update the storage of caching nodes with the top-K popular contents. Conventional statistical caching schemes are not robust to the time-variant nature of the underlying pattern of content requests, resulting in a surge of interest in using Deep Neural Networks (DNNs) for time-series popularity prediction in MEC networks. However, existing DNN models within the context of MEC fail to simultaneously capture both temporal correlations of historical request patterns and the dependencies between multiple contents. This necessitates an urgent quest to develop and design a new and innovative popularity prediction architecture to tackle this critical challenge. The paper addresses this gap by proposing a novel hybrid caching framework based on the attention mechanism. Referred to as the parallel Vision Transformers with Cross Attention (ViT-CAT) Fusion, the proposed architecture consists of two parallel ViT networks, one for collecting temporal correlation, and the other for capturing dependencies between different contents. Followed by a Cross Attention (CA) module as the Fusion Center (FC), the proposed ViT-CAT is capable of learning the mutual information between temporal and spatial correlations, as well, resulting in improving the classification accuracy, and decreasing the model's complexity about 8 times. Based on the simulation results, the proposed ViT-CAT architecture outperforms its counterparts across the classification accuracy, complexity, and cache-hit ratio

    Interference Aware Routing Game for Cognitive Radio Ad-hoc Networks, Journal of Telecommunications and Information Technology, 2018, nr 3

    Get PDF
    Cognitive radio is a new communication paradigm that is able to solve the problem of spectrum scarcity in wireless networks. In this paper, interference aware routing game, (IRG), is proposed that connects the flow initiators to the destinations. A network formation game among secondary users (SUs) is formulated in which each secondary user aims to maximize its utility, while it reduces the aggregate interference on the primary users (PUs) and the end-to-end delay. In order to reduce the end-to-end delay and the accumulated interference, the IRG algorithm selects upstream neighbors in a view point of the sender. To model the interference between SUs, IRG uses the signal-to-interference-plus noise (SINR) model. The effectiveness of the proposed algorithm is validated by evaluating the aggregate interference from SUs to the PUs and end-to-end delay. A comprehensive numerical evaluation is performed, which shows that the performance of the proposed algorithm is significantly better than the Interference Aware Routing (IAR) using network formation game in cognitive radio mesh networks
    corecore